1.热泵技术在建筑节能中的作用有哪些

2.空气能热泵是什么

3.水源热泵的发展及其在我国的利用

4.一般高温热泵的能效比是多少?

5.污水源热泵工作原理

6.空气能热泵十大品牌?

7.蒸汽供热和热泵哪个节能

热泵三联供系统原理_三联水源热泵家用空调

、水源热泵系统节能性

以暖运行为例,目前暖方式有集中锅炉房供热方式、热电厂供热方式、分户燃气暖方式,水源热泵方式有利用井水、江、河、湖泊水及工业余热形式;也有利用自来水冬季要加热方式。它们耗能量见表1。

耗能量比较 表1 暖方式 现有住宅建筑 节能建筑

耗能量 折算至标准煤 耗能量 折算至标准煤

集中锅炉房 25.08Kg/m2.年 25.08Kg/m2.年 12.41Kg/m2.年 12.41Kg/m 2.年

热电厂 13.96Kg/m2.年 13.96Kg/m2.年 9.03Kg/m2.年 9.03Kg/m 2.年

分户燃气暖 10.6Nm3/m2.年 13.02Km3/m2.年 6.86Nm3/m2 .年 8.43Kg/m2.年

水源热泵(井水、河、湖水) 22.46kwh/m2.年 9.16Kg/m2 .年 14.54kwh/m2.年 5.93Kg/m2.年

水源热泵(加热源) 22.46kwh/m2.年4.34Kg/m2.年 13.5Kg/m2 .年 14.54kwh/m2.年2.81Kg/m2.年 8.74Kg/m2.年

表1计算依据:

① 住宅建筑为北京市多层住宅,现有建筑耗热量指标q?H为31.82W/m2,设计热负荷指标为q为43.82W/m2,节能建筑q?H为20.6W/m2,q为28.37W/m2。暖全年需热量:现有 建筑为95.46kwh/m2年,节能建筑为61.80kwh/m2年。

② 集中锅炉房:现有供热系统热网输配效率η?1为0.85,锅炉效率η?2为0.55,节能供 热系统η?1为0.9,η?2为0.68,

③ 热电厂供电标准煤耗为0.408Kg/kwh,供热标准煤耗为40.7Kg/GJ。

④ 水源热泵暖COP=4.25。

从表1可知,水源热泵暖方式全年耗能量均低于集中锅炉房和热电厂,节能效益比较明显。

利用井水、江、河水或工业余热为热源水源热泵节能性十分明显,当水源热泵能效系 数4.0时,与热电联产供热方式比,暖节能性率约为40%。 当用加热热源时,水源热泵节能性是有条件,主要影响因素是:水源热泵能效系数;热源加热容量。

① 水源热泵能效系数影响(见表2)

制热容量为4KW时能耗* 表2 / COP=4 COP=4.5 节能率

(%)

加热量

耗能(kg标煤) 3×860/7000×0.9=0.409 3×860/7000×0.9=0.409 /

压缩机耗能

(kg标煤) 1×0.408=0.408 0.88×0.408=0.363 /

合计 0.817 0.771 5.6

*加热容量为总供热量75%。

从表2可知,COP从4提高到4.5后,节能率约为5.6%,相当于减少加热容量0.3296KW,即约相 当于减少热负荷10%。

② 加热器加热容量影响(见表3)

制热容量为4KW时能耗* 表3 / 加热容量/总供热量0.75 加热容量/总供热量0.5 节能率(%)

加热量耗能(kg标煤) 0.409 2×860/7000×0.9=0.273 /

压缩机耗能(kg标煤) 0.408 1×0.408=0.408 /

合计 0.817 0.681 16.6

*COP=4

从表3可知,当加热容量为总供热量比从0.75降到0.5时,节能率约为16.6%。

③ 节能条件

制热容量为4KW热电联产能耗为:

(4×860)/( 7000×0.83×0.85) =0.6kg/4kwh

由此可知:

当COP=4.0,加热容量为总供热量0.5时,与热电联产供热方式比,它节能率 约为2%。

当COP=4.5,加热容量为总供热量0.5时,与热电联产供热方式比,水源热泵节能率约为8%。

但当COP=4.0,加热容量为0.75总供热量时,热电联产将比水源热泵节能,节能效率约 为15%。当COP=4.5时,其节能率约为10%。

节能主要因素如下:

① 水源热泵机组直接安放户内,热网输配损失可忽略不计。

② 水源热泵机组暖能效系数COP大于4,部分负荷时,COP值仍很稳定。

③ 以井水,江、河、湖水及工业余热低温热作为热泵热源水源热泵系统,暖耗热量仅 为全年需热量1/4。

④ 以自来水为热源冬季需加热源水源热泵系统,考虑压缩机发热量,住宅同 时使用系数及夜间调节温度等措施后加热容量约为热负荷1/2~1/3,加热量约为全年 需热量1/2~1/3。

二、水源热泵系统经济性

经济性指是各种空调暖方式初投资、运行费和热价。

目前国内外已用暖空调联供方案有:

① 热电冷三联供: 夏季,热电厂抽汽+蒸汽吸收式制冷

冬季,热电厂抽汽+汽水换热器供热

② 热电冷三联供: 夏季,热电厂热水+热水吸收式制冷

冬季,热电厂热水+汽水换热器供热

③ 直燃式冷热水机组:夏季、冬季,直燃式冷热水机组制冷、供热

④ 燃气-蒸汽联合循不

⑤ 电制冷+燃气(油)锅炉暖

⑥ 电动水源热泵。这类机组运行性能稳定,性能系数COP值较高,理论计算可达7,实际运 行时约为5,且可充分利用江河、湖、海水等自然能源,冬季供暖耗能少,是一种节能性好冷热源设备。

⑦ 空气源热泵。冷热源兼用,整体性好,安装方便,可露天安装,用风冷,省却了冷却 塔及冷却水系统,缺点是当室外温度较低时,需增加热源。各种方案投资和成本(不 包括户内系统)见表4。

各方案投资和成本比较* 表4 项目 热电冷

(蒸汽) 热电冷(热水) 直燃式 电制冷锅炉供热 集中式电动水源热泵 分体式空气源热泵 燃气-蒸汽联合循环

投资(万元/KW) 0.1

/0.223

(含源网) 0.275

/0.302

(含源网) 0.207 0.206 0.335 0.199 0.436

成本(元/KWH) 0.139 0.151 0.214 0.207 0.167 0.220 0.081

*为《住宅区三联供系统研究》中提供数据,成本为年运行成本。

下面以兴降矿十八层单身职工宿舍为例,说明水源热泵暖空调联供方案经济性。

十八层单身宿舍建筑形状为Y形,总暖空调建筑面积为9564m2,2~18层为标准层,标准层面积为562.6m2,设计冷热负荷为573.84KW。表5为暖空调联供方案,表6为各方案初 投资比,表7为各方案运行费比较,表8为各方案综合比较。

暖空调方案 表5 序号 方案 暖空调方式 备 注

方案1 以下水为冷热源水源热 泵(水-空气) 冬天:热泵产生热风送至户内夏天:热泵产生冷风送至户内 每户设 热泵一台将风送至各房间

方案2 以下水为冷热源水源热泵(水-水) 冬天:热泵产生热水送至风机盘管 夏天:热泵产生冷水送至风机盘管 热(冷)源集中、每户设风机盘管

方案3 电制冷+热电厂暖 冬天:热电厂蒸气+汽水换热器夏天:中央空调 机送冷水至风机盘管 热(冷)源集中、每户设风机盘管

对比方案 分体空调+锅炉房暖 冬天:锅炉房(热电厂)供热,户内 散热器 夏天:每户安装分体空调机 热源集中、冷源分散空调品质较差

各方案初投资比较 表6

方案1(进口) 方案2 方案3 对比方案

进口 国产

初投资*(万元) 237.4 305.8 238.2 236.6 267.15

单位建筑面积投资(元/m2) 248 319.7 249.1 247.4 279

*计算时包括安装费15%,运行调试费5%,税及管理5%,设计费2%和利润10%。

各方案运行费比较(元/m2) 表7

方案1 方案2 方案3 对比方案

暖 空调 暖 空调 暖 空调 暖 空调

不考虑同时使用系数,热回收系数 19.25 19.25 9.5 6.2 9.5 7.2

合计 19.25 19.25 15.7 16.7

考虑修正系数 10.78 10.78 9.5 4.34 9.5 7.2

合计 10.78 10.78 13.84 16.7

〖BG)F〗 兴隆矿处兖州市,兖州市气象资料,该区冬季暖期天数106天,延时小时数2 544小时,最大负荷小时数2544*(20-0.4)/〔20-(17)〕=1847小时。夏季空调期天数90天, 延时小时数2160小时,济南、淄博三联供实际测试资料,取夏季最大负荷小时数为720 小时。则单位建筑面积,暖期需供热量60W/m2*1847=110.5kwh,空调期需冷量60W/m2* 720=43.2kwh。

各方案综合比较 表8 方案 单位供热(冷)量能耗(kg标煤/kwh) 单位供热(冷)量系统投资(万 元/KW) 单位供热(冷)量设备全年运行费(元/kwh)

方案1 0.057 0.414(进口) 0.07

方案2 0.057 0.533(进口)/0.415(国产) 0.07

方案3 0.133 0.412 0.12

对比方案 0.148 0.465 0.11

从表6、表7、表8对比可知,兴隆矿实施暖空调,以方案1为佳。

前面提到方案1水源热泵(水-空气),方案2水源热泵(水-水)技术与经济上都是可用 方案。但方案2中大型水源热泵是一种集中冷(热)源方式,目前,国内尚无大型水源热泵 厂家,进口设备较贵,而国产水源热泵系列不全,单台容量较小,将多台设备集中放置机房时,才能形成集中冷(热)源形式,投资较大,安装运行维护不便。

是从单位供热(冷)量所需能耗,从投资和运行费上看方案1都具有明显优越性。 其中进口热泵机组价格与方案2中国产设备投资相近,但比方案2进口设备价格低多, 且不要另建机房。,十八层楼单身宿舍拟用方案1为实施方案。

水源热泵暖空调联供方案投资偏低主要原因:

① 不设专用机房。中央空调机房面积(包括空调装置、电气及其它)约为空调建筑面积5 ~8%,其中空调装置约占4~5%,以10层建筑物为例,其中机房约占一层。水源热泵将空调 装置分散设每户,减少了机房建设费用,寸土寸金区,增加办公面积,营业面积作用就更大了。

② 封闭水管不要保温,对竖井没有特殊要求。中央空调系统竖井占有较多建筑物有效 面积,全空气系统竖井面积更大。竖井布置是否恰当,会影响空调系统效率,对空调投资有较大影响。

③ 不占有房间有效面积,中央空调系统户内装置风机盘管放置窗户下,对住宅 影响较大。

水源热泵联供方案运行费偏低原因:

① 水源热泵暖运行时,约占总供热量3/4吸收热来自井水,江、河低温热或工业余热 ;空调运行时,约为总制冷量1.2倍总散热量由低温热或工业余热分摊,,较多降 低了暖、空调系统运行费。

② 水源热泵机组直接设置用户房间内,减少了输配损失。

③ 水源热泵机组能效系数较高,且性能系数稳定性较好。

④ 水源热泵系统具有热回收性能。当同一建筑中有房间需供热,有房间需空调时,往 往无需冷却及加热。

三、水源热泵系统可靠性

暖、空调系统运行可靠性指是系统稳定性好,调节灵活。所谓稳定性好指 是暖空调房间温度、湿度、气流速度等热舒适性参数不受外界影响,保持设计范围内,即当系统某一部分发生事故,或某用户设备发生故障时,对另外房间没有影响或 影响较少。水源热泵系统热泵机组设置每个房间内,当某一台发生故障后,将联接该设备供、回水阀关断,就不会对相邻用户产生任何影响。说,水源热泵稳定性非 常好。

水源热泵温度自控装置组合热泵机组中,无需另设控制中心或控制室,用户自己 愿望,可灵活控制室温和风机转速。这种方式适合于公共建筑,对不同年龄、不同职业和不同生活要求居住住宅建筑来说,这就显更为重要了。

除此之外,水源热泵系统便于进行热计量,物业公司用户耗电量就可向用户收费,是 解决当前暖、空调收费难一项重要举措。

四、设计是水源热泵实现可靠性、经济性、节能性保证条件之一

水源热泵机组为水源热泵空调暖系统创造了关键性条件,没有这种机组,就不 存这种系统。但机组运行好坏与源、网、机组系统组合方式密节相关。即与系统设计密切相关。

水源热泵暖空调系统设计特点见表9

水源热泵系统设计特点 表9 项目 水源热泵 中央空调

水系统 水温(℃) 15℃/35℃ 空调7℃/12 ℃暖60℃/50℃

水量(m3/h)流速(m3/s) 每冷吨0.191/s0.684m3/hV≯0.83m /sG≮1GPM=0.0631/s 空调制冷量/5℃ 暖 制热量/10℃

风系统) 风量(l/s)送风温差(△t)风速(m/s) 每冷吨142~248l/s(高、中、低三档)511~893m3/h=约10℃~15 ℃主干管2~3支干管2~2.5m/s 用户要求、要求高、△t小、风量大。主干管3-4m/s、主干管2.5-3m/s

补助加热量(KW) 按吸热量计算、考虑同时使用系数 或夜间改变设计参数后,补助加热量约为设计热负荷1/2~1/3 按设计热负荷计算

冷却塔 按总散热量0.6~0.8选择冷却塔 按总散热量计算

自动控制 热泵专用控制;恒温调节器、自动转换开关、水温控制器、机 组安全控制、风速三档控制 户内:风机盘管三速控制中央控制室温度、压力、流量 控制

运行参数* 表10 参数 空调运行 暖运行

最低 标准 最高 最低 标准 最高

运行 进风 干球 温球 21 14 24 18 29 26 13 - 20 - 21 -

水 进水 出水 7 12 33 38 59 54 -4*2?-6*2 18 14 29 26

极限 进风 干球 温球 18 12 - - 35 26 5 - - - 27 -

水 进水 出水 7 12 - - 49 54 - 4*2?-6*2 ? - - 29*3?26*3?

〖BG)F〗

注:[WB]*1机组送风量为每冷吨0.16m3/s,水流量为每冷吨0.16升/s至0.19升/s。

[DW]*2此时为乙稀乙二醇溶液。

[DW]*3短时间内可以为35/28℃。

水源热泵系统设计时要注意以下几个问题。

① 水源热泵机组容量不要过大。中央空调冷热源设备选型时,设备制冷(热)量约为设计 冷( 热)负荷1.05~1.10。水源热泵机组选型时,应尽量接近设计冷(热)负荷。若机组偏大时 ,运行时间短,启动频繁。机组容量合适,运行时间长,有利于除湿。

② 封闭水系统水温选择,夏季要求水温低些,目是提高能效,降低耗电功率。冬季水 温不要太高,水温高时,制冷量高了,但耗电功率也高了,能效系数变化不大。

③ 设计时要考虑暖空调对象建筑物同时使用系数。同时使用系数取值与建筑物类型 有关,与建筑物数量有关,需理论计算和实测确定。《住宅建筑空调负荷计算中同时使用系数确定》列出数据是:当住户〈100户时,该系数为0.7;当户数为100~150户时, 为0.65~0.7;当户数为150~200户时为0.6。

五、结束语

从以上分析可知,水源热泵系统是一种可靠、经济、节能暖方式。如此, 它使用清洁能源,它节能效果明显,节能就是环保,电力已进入买方市场条件下,人民生活条件迅速改善条件下,水源热泵无疑将是一种受大家欢迎暖空调方式

(参考)北京华阳水/地源热泵 010-81762900

热泵技术在建筑节能中的作用有哪些

一种利用高位能使热量从低位热源空气流向高位热源的节能装置。

空气源热泵能提供源源不断的冷气输送,实现全屋制冷。与普通空调不同,空气源热泵能够给厨房和洗手间这些区域也提供冷气输送。

集供热水、取暖、除湿、降温、空气滤净等各项功能为一体,全年候不管阴晴雨雪,全天候24小时不间断连续自动提供热水;高效除湿,每天24小时最大除湿量6~8公斤。

它是热泵的一种形式。

空气能热泵是什么

一、空气源热泵 空气源(风冷)热泵目前的产品主要是家用热泵空调器、商用单元式热泵空调机组和热泵冷热水机组。热泵空调器已占到家用空调器销量的40~50%,年产量为400余万台。热泵冷热水机组自90年代初开始,在夏热冬冷地区得到了广泛应用,据不完全统计,该地区部分城市中央空调冷热源用热泵冷热水机组的已占到20~30%,而且应用范围继续扩大并有向此移动的趋势。 二、水源热泵 虽然目前空气源热泵机组在我国有着相当广泛的应用,但它存在着热泵供热量随着室外气温的降低而减少和结霜问题,而水源热泵克服了以上不足,而且运行可靠性又高,近年来国内应用有逐渐扩大的趋势。 三、地源热泵 地源热泵是以大地为热源对建筑进行空调的技术,冬季通过热泵将大地中的低位热能提高对建筑供暖,同时蓄存冷量,以备夏用;夏季通过热泵将建筑物内的热量转移到地下对建筑进行降温,同时蓄存热量,以备冬用。由于其节能、环保、热稳定等特点,引起了世界各国的重视。欧美等发达国家地源热泵的利用已有几十年的历史,特别是供热方面已积累了大量设计、施工和运行方面的资料和数据。 四、复合热泵 为了弥补单一热源热泵存在的局限性和充分利用低位能量,运用了各种复合热泵。如空气-空气热泵机组、空气-水热泵机组、水-水热泵机组、水-空气热泵机组、太阳-空气源热泵系统、空气回热热泵、太阳-水源热泵系统、热电水三联复合热泵、土壤-水源热泵系统等。 五、其它热泵 热泵除上述四类以外,还有喷射式热泵、吸收式热泵、工质变浓度容量调节式热泵及以CO2为工质的热泵系统。 六、热泵技术在我国的运用及发展 热泵在我国起步较早。50年代,天津大学的一些学者已开始从事热泵的研究工作。60年代开始在我国暖通空调中应用热泵。例如,从1963年起原华东建筑设计院与上海冷气机厂就开始研制热泵式空调器;1965年上海冰箱厂研制成我国第一台制热量为3720kw的CKT-3A热泵型窗式空调器。1965年天津大学与天津冷气机厂研制成国内第一台水冷式热泵空调机。1966年又与铁道部四方车辆研究所共同合作进行干线客车的空气-空气式热泵试验。1966年原哈尔滨建筑工程学院与哈尔滨空调机厂研制成功LHR-20恒温恒湿热泵式空调机,首次提出冷凝废热用作恒温恒湿空调机的二次加热的新流程。但是,由于我国能源价格的特殊性,以及一些其他因素的影响,热泵空调在我国的应用与发展始终很缓慢。直至70年代末期,才又为热泵空调的发展与应用提供了机遇。80年代初至90年代末在我国暖通空调领域掀起一股热泵热。热泵空调在我国的应用日益广泛,发展速度很快、主要表现在以下几点。 1、热泵空调的学术交流活动十分活跃 2、积极开展热泵空调技术的研究工作 (1)热泵空调技术在我国运用的可行性研究 1986年北京公用事业科学研究所开展了“燃气吸收式热泵供热制冷系统可行性研究“;1988年天津大学热泵研究所开展了京津地区运用热泵兼暖空调节能可行性的研究;1988年中国科学院广州能源研究所开展热泵在我国应用与发展问题的研究;1992年中国建筑科学研究院空调所开展了中、高档旅馆利用热泵技术节约能源的可行性研究;1991年开始,哈尔滨建筑大学开展了在我国应用电动热泵站、吸收式热泵站的可行性研究并进行了闭式环路水环热泵空调系统和太阳能开式环路水源热泵空调系统在我国应用的评价;1996年青岛建筑工程学院开展了青岛东部开发区建设以海水为热源的大型热泵站可行性研究。 (2)空气-空气小型热泵试验装置的研究 国际上公认的房间热平衡试验方法是小型空气-空气热泵性能测试最精确的方法。哈尔滨建筑工程学院于1980年建成国内第一台标定型房间热平衡法试验装置。空调所于1987年建成国内第一台平衡型房间热平衡法试验装置。某空调器检测中心于1986年底建成了由国外全套引进的平衡型房间热平衡法试验台。 建成试验装置后,开展了下述各项工作: ①为国家商检部门标定进口空调器性能,把好质量关; ②为开发空气-空气热泵新产品,对进口热泵空调器进行详细的实验研究; ③标定国产空调器性能; ④我国小型空气-空气热泵除霜问题的研究; ⑤我国小型空气-空气热泵供热季节性能系数的实验研究; ⑥探索提高标定型房间量热计的测试精度的技术措施; ⑦开拓房间热平衡法试验装置用途的研究。 (3)热泵空调的计算机模拟技术的研究与应用 浙江大学开发了一个风冷热泵全年性气候工作的计算机模拟软件,以此研究了风冷热泵运行特性。同济大学等作了直燃型氨-水GAX吸收式热泵的计算机仿真研究和吸收式热泵计算机模块化仿真设计和优化技术的研究。 (4)国内一些研究单位、高校对土壤源热泵十分感兴趣,作了一些实验研究工作。重庆建筑大学对垂直布置的U型管换热器进行了实验研究哈尔滨建筑大学和青岛建筑工程学院对水平布置的地下盘管换热器进行实验研究和计算机数值模拟。 3、热泵空调新产品、新技术不断涌现,产品不断更新换代 早在60年代我国开发了窗式热泵空调器,80年代初开发了分体式热泵空调器,质量不断提高,现已推出变频控制和模糊控制新技术。近年来,我国又先后开发了整体式风冷热泵式冷热水机组、模块式风冷热泵冷热水机组、水源热泵空调器等。例如,上海实业空调机有限公司研制成RF系列热泵空调机,用全新的制冷系统,改进了热泵融霜、防冻结等功能;上海富田空调冷冻有限公司、厦门国本公司等经过几年的努力,不断改进产品质量,基本解决了低温启动、融霜等问题。1994年又研制出全电脑控制双螺杆型空气源热泵式冷热水机组,其性能已达到国外同类产品水平。上海台佳机电有限公司的螺杆用第三代齿形,效率比活塞式压缩机高15%。合众-开利30GQ空气-水热泵机组用多台06E半封闭压缩机,多回路设计,高效换热管,低噪声风机等,并微电脑控制,使机组始终处于最佳运行工况、该厂在1999年推出30HT新型空气-水热泵机组。 目前,空气源热泵冷热水机组市场空前繁荣,生产厂家已由1995年的十几家发展到现在40多家。产品规格齐全,据不完全统计,国内销售的机组共有45个品牌,其中国产机组约占25%左右,其余为合资产品、台资产品和进口产品。例如,美国特灵、开利、约克、麦克维尔,法国的西亚特,意大利的阿尔西;国产台资产品有上海富田、厦门国本、福州的扬帆等。合资的有上海合众-开利、上海新晃、广东吉荣等。根据国内空气源热泵冷热水机组样本及资料的统计,在额定工况下,空气源热泵冷热水机组的制热性能系数基本大于3,有的高达4以上。 4、热泵在空调工程中的应用日益广泛 早在1980年上海手工业局设计室与上海冷气机厂为上海某商场设计了国内第一套空气-水热泵空调系统,运行效果一直良好。近年来随着国内空调技术的飞速发展,热泵空调系统获得广泛的应用、主要表现在: (1)自90年代起窗式热泵空调器、分体式热泵空调器有了突飞猛进的发展,开始步入我国百姓家庭。据国家有关信息中心预测统计,房间空调器在北京、上海、广州、深圳四城市居民家庭普及率达 42.8%,其中约有三分之一以上是热泵型的。 (2)热泵应用的重要方向是解决长江流域建筑物中央空调的冷热源问题。我国部分地区的气候特点是夏热冬冷。上海、浙江、江西、湖南、湖北全境,江苏、安徽、四川大部,陕西、河南南部,贵州东部,福建、广东、广西北部,甘肃南部的部分地区均属于夏热冬冷的气候。在这些地区很适宜应用空气源热泵冷热水机组,解决建筑物中央空调冷热源的问题。同时,再考虑到热泵的地球环保效益,使空气源热泵冷热水机组在这些地区的大、中、小城市中获得广泛的应用。目前,空气源热泵冷热水机组的地区应用范围仍有继续向北移动的趋势。例如,1993年在天津沃特文化游乐总汇第一期空调工程的歌舞厅和餐厅雅座的新风系统中,选配了2台SJC-05H型空气源热泵冷热水机组(制冷量15.1kw,制热量17.9kw)。夏季供冷,过渡季节作为热源,为新风机组提供40~50℃热水,使用效果很好。因此,1994年第二期改造工程的客房空调设计又选2台SJC-15H(制冷量45.3kw,制热量53.8kw)作为空调的冷热源装置。1996年,烟台第一百货商场扩建工程中,也选用了空气源热泵冷热水机组作为空调冷热源,全年运行,效果也不错。 (3)近年来,在我国一些大中城市的现代办公楼和大型商场建筑中开始用闭式环路水源热泵空调系统,以回收建筑物内的余热,效果很好,发展速度很快。 80年代初,我国在一些外商投资的建筑中用了闭式环路水源热泵空调系统。这些工程显示出闭式环路水源热泵空调系统回收建筑物内余热的特有功能以及节省或减小常规空调系统的冷热源设备和机房,便于分户计费,便于安装、管理等优点。因此,90年代便得到广泛地应用。据统计,19年国内用闭式环路水源热泵空调系统的工程共52项;从“天龙”水源热泵空调中国地区一览表(共15项工程)看,不仅上海、北京、天津、广州、深圳等大城市中一些工程用它,而且如佛山、绍兴等中、小城市也开始用。据有关文献的预测分析,闭式环路水源热泵空调系统是一种很有前途的节能型空调系统,在我国将会有广阔的应用前景。 节能始终是空调领域中的重要研究课题之一。热泵技术能提高能源利用率,是合理用能的典范。正因为热泵的节能效益,才使热泵在20世纪70年代后,在空调领域中获得广泛地应用与发展。有关文献将这一时期称为热泵发展的第一兴旺期。并预言,由于全球温暖化问题成为世人瞩目的焦点,人们要求减少温室效应。也就是说,空调能源效率再次变得最重要,这不是由于经济问题,而是出于环境原因,我们暧通空调工作者将会经历热泵发展的第二次兴旺期。为此,暖通空调工作者应做好思想准备,加强有关热泵空调方面的研究工作,积极推广应用热泵空调。

水源热泵的发展及其在我国的利用

空气能热水器,也称“空气源热泵热水器”。“空气能热水器”把空气中的低温热量吸收进来,经过氟介质气化,然后通过压缩机压缩后增压升温,再通过换热器转化给水加热,压缩后的高温热能以此来加热水温。 空气能热水器具有高效节能的特点,制造相同的热水量,是一般电热水器的4-6倍,其年平均热效比是电加热的4倍,利用能效高。 该新产品克服了太阳能热水器依靠阳光热和安装不便的缺点。由于空气能热水器的工作是通过介质换热,因此其不需要电加热元件与水直接接触,避免了电热水器漏电的危险,也防止了燃气热水器有可能爆炸和中毒的危险,更有效控制了燃气热水器排放废气造成的空气污染。 空气能热水器不需要阳光,因此放在家里或室外都可以。太阳能热水器储存的水用完之后,很难再马上产生热水,如果电加热又需要很长的时间,而空气能热水零下20摄氏度以上,就可以24小时全天候承压运行。工作原理

空气能热水器是按照“逆卡诺”原理工作的,具体来说,就是“室外机”作为热交换器从室外空气吸热,加热低沸点工质(冷媒)并使其蒸发,冷媒蒸汽经由压缩机压缩升温进入水箱,将热量释放至其中的水并冷凝液化,随后节流降压降温回到室外的热交换器进入下一个循环。简单来说是吸收空气中的热量来加热水,被吸收热量的空气也可被运用到厨房,解决闷热问题。所以说这种空气能的热泵功能齐全。效果也是很不错的。好多的地方都会购买这种空气能热泵。为人们的生活排忧解难。

运用热泵工作原理制热,与空调制冷相反——国家制冷标准是1000瓦,电制冷2800瓦。根据热平衡的原理,同时最少产生2800瓦的热量,加上输入的1000瓦电,实际产生的热量在3000——4000瓦,把这些热量输送到保温水箱,其耗电量只是电热水器的四分之一(电热水器即使热效率100%,输入1000电也只有1000瓦的热)。

空气能热水器则不需要阳光,因此放在家里或室外都可以。太阳能热水器储存的水用完之后,很难再马上产生热水。如果电加热又需要很长的时间,而空气能热水器只要有空气,温度在零摄氏度以上,就可以24小时全天候承压运行。这样一来,即使用完一箱水,一个小时左右就会空气能热水器再产生一箱热水。同时它也能从根本上消除了电热水器漏电、干烧以及燃气热水器使用时产生有害气体等安全隐患,克服了太阳能热水器阴雨天不能使用及安装不便等缺点,具有高安全、高节能、寿命长、不排放毒气等诸多优点。空气能热水器的寿命一般可以达到15至20年。

优点

1、节能

空气能热水器

毋庸置疑,空气能热水器最大的优点就是节能。将空气中的低温热能通过压缩机转化为高温热能,以相同的热水制造量为基准,和电热器热水器相比,最大化节约电能,使用成本只有电热水器的1/4,而和传统的燃气热水器比,不用耗用任何的煤气燃料,使用成本只是燃气热水器的1/3。以空气为主体,节约能量,不仅可以节约人们的使用成本,更是顺应了世界节能的主体,这就是空气能热水器最大的亮点之一。

2、便捷

空气能热水器的卖点是空气,而对于家居用品来说,人们最基本的需求之一就是使用方便,因此,便捷成为了空气能热水器的第二大亮点。因为空气的数量不受室内室外、晴天阴天的影响,和太阳能热水器相比,空气能热水器就显得非常便捷,无论是安装在室内或室外,更不论阴天晴天,温度在零摄氏度以上,都可以使用。此外,用完一箱水后,空气能热水器只需要不超过一小时的时间便可以再制造一箱热水,可供一家人全天候使用。

3、安全

电热热水器存在漏电的安全隐患,燃气热水器存在煤气中毒的忧患,和这两种热水器相比,空气能热水器通过介质换热,避免了电加热元件和水直接接触,这样一来就解决了电热热水器存在的漏电隐患,其次,因为原料是空气,因此也排除了燃气热水器煤气爆炸或者煤气中毒的可能性,让人们使用得更加舒适无忧。

4、环保

节能和环保是相辅相成的,而环保是空气能热水器在节能优势上的又一加分点。首先,空气能热水器利用电能压缩空气制造热能,不排放废气和有毒气体,不仅安全,更营造了一个无污染的沐浴环境。其次,空气能热水器的使用时间长达15-20年,高寿命不仅可以减少人们更换热水器的成本和麻烦,在某种意义上来说,更是减少了垃圾制造,这也是环保的一个重要方面。我们应该好好的利用它的这种功能。

一般高温热泵的能效比是多少?

郭高轩

(北京市地质工程勘察院地热工程研究所)

摘要:本文探讨了水源热泵的概念及分类,简要阐述了其工作原理、技术特点和难点,并对国内外的发展和利用现状进行了综述,最后指出了目前应用中存在的问题,并对未来的发展作了初步展望。

1 引言

随着能源危机和环境污染的矛盾日益突出,以环保、绿色和节能为特征的能源研发成为各国发展的主流。由于供暖和制冷在能耗中都占有相当大的比例,从而使水源热泵技术近年来备受关注和重视。它以高能效比、稳定的运行工况、低运行费用、低初投资以及便于管理等优点在世界诸多国家能源结构中扮演愈来愈重要的角色[1]。

2 概念及分类

热泵是一种利用高位能使热量从低位热源流向高位热源的节能装置。其分类方法很多,最常用的是以低位热源种类分,可分为水源热泵、土壤源热泵、空气源热泵和太阳能热泵,水源热泵又可以分为地下水水源热泵和地表水水源热泵。通常,人们习惯于把前二者合称地源热泵。但在有的文献中,人们将利用封闭的地埋管系统吸收盘管四周土壤热量的系统称为地源热泵,而将具有抽取和回灌地下水系统的装置称为地下水水源热泵。目前,我国国内对于这一领域的概念分类还是没有明确界定,名称引用比较混乱。

水源热泵系统首先通过潜水泵、过滤器为水源热泵机组提供水源,热泵机组利用少量的电能提取水(通常为地下水)中低位能并将其聚变为高品位能量供末端用户使用,从而达到夏季制冷和冬季制热的目的[2~4]。

3 水源热泵技术的特点

与传统的制热、制冷设备和技术相比,水源热泵技术具有以下优点:

(1)可再生性:浅层介质的地温几乎始终维持在一个恒定水平上,水源可以循环利用,不断的提取,使得水源热泵技术成为可再生能源一种形式;

(2)经济性:经多数实例统计计算,通常水源热泵比电锅炉加热节省三分之二以上的费用,比燃料锅炉可节省二分之一以上的费用;

(3)环保性:水源热泵的污染物排放与空气热泵相比,相当于减少40%以上,与电供暖相比,相当于减少30%以上。与燃油锅炉和燃煤锅炉相比更显优势。由于其没有燃烧,没有排烟,完全达到国家废物零排放的环保理念;

(4)节能性:以水为载体,以浅层地下水为主要来源,冬季将低品位的热能提升供暖,夏季将低品位的冷能提升供制冷,一个运行周期内能量基本维持平衡,大多数水源热泵系统的COP都可达到3.0以上,有的甚至达到5.0;

(5)灵活性:不仅可以供暖、供冷,而且还可以供生活热水。此外,水源热泵系统占地面积比较小、节省场地,场地清洁,可以安装于宾馆、商场、办公楼、学校和别墅等。此外,热泵的机组轻巧,便于安装和维修、更换[5~6]。

4 国内外发展现状

1912年,瑞士人提出“热泵”的概念,1946年第一个热泵系统在美国俄勒冈州诞生。14年起,瑞士、荷兰和瑞典等国家逐步资助建立示范工程。20世纪80年代后期,热泵技术日臻成熟。在过去的10年时间里,大约30个国家的热泵平均增长速率达到10%,在国际社会中,由于其在减少二氧化碳方面得到普遍认可而受到足够重视和快速发展。

在美国,每年接近安装5~6万套热泵机组,超过600个学校安装了热泵系统进行供暖和制冷。在瑞士,由于高原气候条件,冬天日照少,水源热泵系统已经以每年15%的速度快速增长。目前,瑞士有超过25万台热泵系统在运行,成为世界上利用热泵密度最大的国家。在英国,尽管地质条件非常复杂。但是热泵技术也从非常小的起步发展到遍及整个英国。涉及领域有:私人建筑、房地产开发、公共设施等。目前,瑞典的地源热泵安装基本占总需求负荷的60%,尤其是进入到21世纪之后,瑞典的热泵安装增长更为迅速,仅2001年热泵销售就突破25000台。澳大利亚虽然大部分国土位于热带,但是引入热泵的数量也达到30000多套[7~8]。

我国的热泵研究始于20世纪50年代,由天津大学的部分学者牵头,但是由于多种原因,发展缓慢,直到80年代末90年代初,相关领域掀起了一股“热泵热”。进入21世纪以来,我国在热泵模型仿真、试验装置、能耗评价以及系统材质研究等方面取得了一批显著成果。

图1 水源热热泵相关文献搜索结果统计图

在中国科技官方数据库——中国期刊网上,笔者分别对“热泵”和“水源热泵”进行了题名和关键词搜索,搜索结果如图1。可以看出,进入21世纪以来,随着国家可再生能源法的颁布,热泵技术以及水源热泵极大地吸引了广大科技工作者的注意。这也符合国家提出的绿色经济、构建和谐社会和走可持续发展的方针。以百度搜索引擎搜索“热泵”和“水源热泵”,搜索到的网页分别为514000和86000,以google搜索的结果分别为446000和156000。从1989年到2005年,我国科技工作者以热泵为关键词发表的科技文章总计达到2872篇。其中2001年到2005年的文献数量占总数的66.7%。

目前,我国利用热泵技术的城市达30多个,据有关部门统计,全国范围内利用水源热泵和土壤源热泵技术的面积已达3000万m2,截至2004年底,仅北京地区利用水源热泵和土壤源热泵技术供暖和制冷的面积已达到500万m2[9]。

5 存在的问题

5.1 经济性分析不足

缺乏适宜性评价,盲目投资,扩大开发规模问题严重。水源热泵技术是一项系统工程,有其自身适用的条件。地区之间因能源价格不同、气候条件不同、水源条件不同,造成初投资和运行费用存在较大差异,所以要针对不同地区、不同用户进行经济性分析。要综合经济、社会、环境等各方面的因素进行效益评价,寻求最合适的地热能利用方式。目前,盲目跟风显著、示范成功工程偏少。

5.2 政策规范制定落后于市场需求

目前,热泵技术还缺少相关的政策法规和技术要求。具体表现在,①工程设计缺乏系统的设计规范和标准,大都处在无标准可依状态;②对开发单位缺乏资质管理,实施的工程缺证;③缺乏协同作业,大都是暖通空调专业管地上、地质专业人员管地下,造成许多热泵系统匹配差,失败案例较多;④后续管理政策相对滞后。比如后期维护和相关环境地质问题(地面沉降、热污染等)监测多数未进行等。

5.3 系统缺乏优化

系统安全性和稳定性有待提高。目前,大多数热泵系统用的工质都是R22,根据蒙特利尔议定书,R22将于2010年禁止使用。安全性和环保性的新型工质研究是未来必须解决的问题。另外,系统腐蚀问题造成的寿命缩短往往被忽视。系统整体匹配和分区域控制技术研究不足,利用效率偏低,系统优化投入偏少[10]。

6 展望

6.1 迅速制定相关政策法规和技术规范

随着“倡导构建节约型社会,发展绿色环保型经济”热潮的兴起。热泵技术已成为当前研究和推广的热点。尤其是在建设“宜居城市”、“生态城市”的竞赛中,各大城市都相继不允许再建以煤、油为燃料的锅炉房。

那么就迫切需要能够正确地引导推广热泵技术的相关法规尽早出台。应成立相关的管理部门,尽早制定相应的评价体系和具体操作流程,如水源热泵系统开发的适宜性评价、水源热泵系统的环境影响评价等;此外还需要由专家编纂相应的技术规范,对热泵机组参数、系统设计、安全稳定性维护以及开与回灌等工程的实施进行规范化。

6.2 适宜性评价和系统优化

第一,水源必须满足要求,主要有地下水水量、水质和水温。水源热泵系统对水文地质条件有很强的依赖性,而地质结构具有很强的非均质性,一个地区的开发利用模式不能生搬硬套到另外一个地区。例如:有的地区含水层富水性好,大多为砂卵砾石,不仅可以减少开井和回灌井的数量,还能够达到百分百的回灌,而有的则完全不行。各地区应结合本地的地质情况和气候条件进行适宜性评价、合理规划,建立适合自身的开发利用体系是当务之急。

第二,系统的匹配优化问题。应结合当地的水文、气象、水文地质条件及负荷要求,优化总井数(抽水井和回灌井)、井深、井身结构和成井工艺。

第三,后期运行和维护技术的研究。应及时对系统运行工况进行监测,对系统腐蚀和水井老化(砂堵、岩化、胶结)等问题进行研究,并提出相应的防治和治理措施。此外,应对噪音污染、热污染等问题进行专题研究[11]。

6.3 多系统联合研究,扩大应用范围

水源热泵系统虽然有诸多优点,但是它总有不足之处,例如它受到水量、水质、冬季表层土壤冻结等因素的限制,所以应当开展关于土壤、水源、空气、太阳能、地热、废热等的双联甚至三联热泵的研究,以此来扩大热泵的应用范围,满足不同用户的需求[12]。

此外对水源热泵系统的设计进行优化和相关仪器的研究如:岩土热物性测试仪的研制,分区域控制器的研究等也将是亟需解决的问题。相信在不久的将来,绿色能源技术——水源热泵技术必将在暖制冷、节能、环保领域发挥越来越大的作用,为国民经济的发展、生态环境的保护、能源结构的优化等方面做出应有的贡献。

参考文献

[1]Arif Hepbasli,Leyla Ozgener,Development of geothermal energy utilization in Turkey:a review,Renewable and Sustainable Energy Reviews,2004,(8):433~460

[2]马最良,热泵技术(上),电力需求侧管理,2003,5(5):58~60

[3]马最良,热泵技术(下),电力需求侧管理,2003,5(6):58~62

[4]龚明启,冀兆良,浅议热泵分类,河北能源职业技术学院学报,2005,(1):60~63

[5]郭莹,水源热泵的应用特点,建筑技术开发,2003,(10):94~95

[6]高小青,浅谈水源热泵空调系统的优缺点,安装,2005,(8):30~32

[7]Steve Kanaugh.Design consideration for ground and water source heat pumps in southern climates,ASHRAE trans,1989,95(1):1139~1148

[8]胡鸣明,刘宪英,国外地源热泵的发展历史与设计方法,四川制冷,1999,(2):20~23

[9]王芳,范晓伟,周光辉等,我国水源热泵研究现状,流体机械,2003,(4)57~59

[10]张自力,水源热泵若干问题探讨,机械研究与应用,2004,(5):90~92

[11]文远高,郑重,地下水在住宅空调中应用的方式及注意的问题,住宅科技,2004,(6)38~40

[12]武云甫,田峰,高岩,住宅水源热泵规划设计,技术交流,2004,(6)36~39

污水源热泵工作原理

PHNIX以低温空气源热泵技术,直热式热泵热水控制技术,三联供热泵技术,泳池热泵技术在业内享有盛誉。近年来,在中国市场率先推出了地源/空气源三联供机组,泳池恒温除湿机组,小精灵/小玲珑家用热泵热水器,R410A金刚系列热泵机组,北极星系列热泵热水机组,这些产品的出现,填补了国内市场的空白,受到了消费者的好评。特别是北极星系列热泵热水机组,能在零下25度的环境中工作,其最高出水温度高达65度,在国标工况下,其制热能效比高达3.8,该产品的各项指标都达到世界水平。

空气能热泵十大品牌?

污水源热泵的主要工作原理是借助污水源热泵压缩机系统,消耗少量电能,在冬季把存于水中的低位热能“提取”出来,为用户供热,夏季则把室内的热量“提取”出来,释放到水中,从而降低室温,达到制冷的效果。其能量流动是利用热泵机组所消耗能量(电能)吸取的全部热能(即电能+吸收的热能)一起排输至高温热源,而起所消耗能量作用的是使介质压缩至高温高压状态,从而达到吸收低温热源中热能的作用。污水源热泵系统由通过水源水管路和冷热水管路的水源系统、热泵系统、末端系统等部分相连接组成。根据原生污水是否直接进热泵机组蒸发器或者冷凝器可以将该系统分为直接利用和间接利用两种方式。直接利用方式是指将污水中的热量通过热泵回收后输送到暖空调建筑物;间接利用方式是指污水先通过热交换器进行热交换后,再把污水中的热量通过热泵进行回收输送到暖空调建筑物。雷诺特集成城市原生污水冷热源热泵空调系统的成套技术与工艺,提供污水源热泵系统咨询、建设、改造等服务。

蒸汽供热和热泵哪个节能

1、PHNIX中央空调;

水源热泵,风冷模块机组,风冷模块三联供机组

2、房间暖;

金刚系列,地源金刚系列,变频金刚系列,北极星系列

3、生活热水;

小玲珑系列,小精灵系列, 循环式热水机组,直热式热水机组

4、泳池恒温和除湿

三联供泳池恒温除湿主机,泳池空气除湿处理风柜

热泵是一种将低温热源的热能转移到高温热源的装置。通常用于热泵装置的低温热源是我们周围的介质——空气、河水、海水,或者是从工业生产设备中排出助工质,这些工质常与周围介质具有相接近的温度。热泵装置的工作原理与压缩式制冷机是一致的;在小型空调器中,为了充分发挥它的效能,在夏季空调降温或在冬季取暖,都是使用同一套设备来完成的。在夏季空调降温时,按制冷工况运行,由压缩机排出的高压蒸汽,经换向阀(又称四通阀)进入冷凝器,制冷剂蒸汽被冷凝成液体,经节流装置进入蒸发器,并在蒸发器中吸热,将室内空气冷却,蒸发后的制冷剂蒸汽,经换向阀后被压缩机吸入,这样周而复始,实现制冷循环。在冬季取暖时,先将换向阀转向热泵工作位置,于是由压缩机排出的高压制冷剂蒸汽,经换向阀后流入室内蒸发器(作冷凝器用),制冷剂蒸汽冷凝时放出的潜热,将室内空气加热,达到室内取暖目的,冷凝后的液态制冷剂,从反向流过节流装置进入冷凝器(作蒸发器用),吸收外界热量而蒸发,蒸发后的蒸汽经过换向阀后被压缩机吸入,完成制热循环。这样,将外界空气(或循环水)中的热量“泵”入温度较高的室内,故称为“热泵”。

热泵节能主要有一下几类:

一、空气源热泵空气源(风冷)热泵目前的产品主要是家用热泵空调器、商用单元式热泵空调机组和热泵冷热水机组。

二、水源热泵

其原理,地下水从深井1中抽出进入板式换热器械2,与楼内循环水系统的水换热后,再通过深井2排到地下,循环水系统经住宅楼内管网送入各户,经各户的水源热泵产生热水(冬季)或冷水(夏季)送入末端装置,满足供热或空调的要求。

三、地源热泵

地源热泵是以大地为热源对建筑进行空调的技术,冬季通过热泵将大地中的低位热能提高对建筑供暖,同时蓄存冷量,以备夏用;夏季通过热泵将建筑物内的热量转移到地下对建筑进行降温,同时蓄存热量,以备冬用。

四、复合热泵为了弥补单一热源热泵存在的局限性和充分利用低位能量,运用了各种复合热泵。如空气-空气热泵机组、空气-水热泵机组、水-水热泵机组、水-空气热泵机组、太阳-空气源热泵系统、空气回热热泵、太阳-水源热泵系统、热电水三联复合热泵、土壤-水源热泵系统等。

五、其它热泵热泵除上述四类以外,还有喷射式热泵、吸收式热泵、工质变浓度容量调节式热泵及以CO2为工质的热泵系统。